The Varieties of Quasigroups of Bol-moufang Type: an Equational Reasoning Approach

نویسنده

  • J. D. PHILLIPS
چکیده

A quasigroup identity is of Bol-Moufang type if two of its three variables occur once on each side, the third variable occurs twice on each side, the order in which the variables appear on both sides is the same, and the only binary operation used is the multiplication, viz. ((xy)x)z = x(y(xz)). Many well-known varieties of quasigroups are of Bol-Moufang type. We show that there are exactly 26 such varieties, determine all inclusions between them, and provide all necessary counterexamples. We also determine which of these varieties consist of loops or one-sided loops, and fully describe the varieties of commutative quasigroups of Bol-Moufang type. Some of the proofs are computer-generated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Scoop from Groups: Equational Foundations for Loops

Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain “group-...

متن کامل

The Varieties of Loops of Bol-Moufang Type

A loop identity is of Bol-Moufang type if two of its three variables occur once on each side, the third variable occurs twice on each side, and the order in which the variables appear on both sides is the same, viz. ((xy)x)z = x(y(xz)). Loop varieties defined by one identity of Bol-Moufang type include groups, Bol loops, Moufang loops and C-loops. We show that there are exactly 14 such varietie...

متن کامل

F-quasigroups and Generalized Modules

In [3], we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the equational class of (pointed) F-quasigroups and the equational class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.

متن کامل

F-quasigroups Isotopic to Groups

In [5] we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FGquasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple F...

متن کامل

A class of simple proper Bol loops ∗ Gábor

For a loop Q, we call the maps La(x) = ax,Ra(x) = xa left and right translations, respectively. These are permutations of Q, generating the left and right multiplication groups LMlt(Q),RMlt(Q) of Q, respectively. The group closure Mlt(Q) of LMlt(Q) and RMlt(Q) is the full multiplication group of Q. Just like for groups, normal subloops are kernels of homomorphisms of loops. The loop Q is simple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003